FORMULACIÓN Y NOMENCLATURA

1) FÓRMULAS QUÍMICAS

a) Fórmula empírica

Expresa mediante símbolos y subíndices los elementos que forman el compuesto y la relación mínima en que sus átomos e iones están presentes en él (proporción ente átomos).

Ejemplo: CH

(No existe ninguna molécula formada exclusivamente por un átomo de C y uno de H).

b) Fórmula molecular

Expresa mediante símbolos y subíndices los elementos que forman el compuesto químico y el nº de átomos de cada elemento que están presentes en una molécula de éste.

NO PUEDE SIMPLIFICARSE

Ejemplos: C_6H_6 (benceno), C_2H_2 (etino)

Ambas sustancias tienen la fórmula empírica anterior (CH)

c) Fórmula desarrollada o estructural

Es una representación que indica la forma de unión de los átomos que constituyen el compuesto químico.

Ejemplos:

H-O-H. H₂O

d) Fórmula semidesarrollada

Se utiliza preferentemente en química orgánica. Se desarrollan solo algunos enlaces (normalmente los que constituyen la cadenas).

Ejemplo: CH3-CH2-CH2OH

2) ESTADO O NÚMERO DE OXIDACIÓN

Es la carga que **tendría** un átomo si los enlaces formados fueran iónicos. No es, pues, carga real. Los estados de oxidación positivos de los no-metales sólo se dan cuando se combinan con otro no metal más electronegativo (generalmente Oxígeno)

a) Principales números de oxidación de los elementos.

Grupos principales

Grupo 1: H: -1,+1; Li, Na, K, Rb, Cs: +1

Grupo 2: Be, Mg, Ca, Sr, Ba: +2

Grupo 13: B: -3,+3; AI: +3

Grupo 14: C: -4,+2,+4; Si: -4,+4; Sn, Pb: +2,+4

Grupo 15: N: -3,+1,+2,+3,+4,+5; P: -3,+1,+3,+5; As, Sb: -3,+3,+5

Grupo 16: O: -2; S, Se. Te: -2,+2,+4,+6

Grupo 17: F: -1 (elemento más electronegativo); Cl, Br, I: -1;+1,+3,+5,+7

b) Elementos de transición

Grupo 4: Ti: +4; Grupo 5: V: + 5

Grupo 6: Cr: +2,+3,+6 Grupo 7: Mn: +2,+3,+4,+6,+7

Grupo 8: Fe: +2,+3 Grupo 9: Co: +2,+3

Grupo 10: Ni: +2,+3, Pt: +2,+4 Grupo 11: Cu: +1,+2; Ag: +1; Au: +1,+3

Grupo 12: Zn, Cd: +2: Hg: +1,+2

c) REGLAS ARBITRARIAS PARA ASIGNAR NUMEROS DE OXIDACON

- 1. Los elementos libres o moleculares que no estén combinados con otro diferente presentan carga cero.
- 2. La suma algebraica de los números de oxidación en los integrantes de un compuesto debe ser igual a cero. En un ion será igual a la carga del ion.
- 3. Los elementos del grupo I A, II A y III A invariablemente presentan carga de +1, +2 y +3 respectivamente.
- 4. Generalmente la carga negativa corresponde al elemento más electronegativo y todos lo demás serán positivos.
- 5. En el Oxígeno es -2, con excepción de los peróxidos por existir enlace entre los oxígenos, será -1.
- 6. En el Hidrógeno es +1, con la salvedad de combinaciones con elementos de menor electronegatividad que él, como en el caso de los hidruros.

d) Cálculo del estado de oxidación (E.O.)

La suma de los E.O. de una molécula neutra es "O" y en el caso de un ion coincide con su carga.

Ejemplo: Determinar el E.O. del S en el H₂SO₄,

Como es una molécula neutra: $(+1) \times 2 + E.O.(5) + (-2) \times 4 = 0$

De donde, despejando queda: E.O. (S) = +6

Ejercicio: Determinar el E.O. del cloro en las siguientes especies: AlCl₃, LiClO₂, HCl, NaClO₃, ClO, ClO₄

- $A|C|_3$: +3 + 3x = 0; x = -1
- LiClO₂: $+1 + x + (-2) \times 2 = 0$; x = +3
- HCI: +1 + x = 0; x = -1
- NaClO₃: $+1 + x + (-2) \times 3 = 0$; x = +5
- ClO^- : x + (-2) = -1; x = +1
- $CIO4^-$: $x + (-2) \times 4 = -1$; x = +7

3) COMPUESTOS BINARIOS (formados sólo por dos átomos o grupos).

En la formulación se pone primero delante el elemento menos electronegativo.

a) ÓXIDOS.

Elemento + oxígeno

Se nombra: oxido más nombre del elemento poniendo entre paréntesis en números romanos la valencia (o estado de oxidación)

La valencia del oxígeno es -2

Se formula: símbolo del elemento + símbolo del oxígeno y se intercambian las valencias Los óxidos metálicos tienen características básicas y forman hidróxidos al añadirles aqua.

Los óxidos no metálicos tienen características ácidas y forman los ácidos oxácidos con agua.

Nomenclatura Stock.

Se pone primero el elemento menos electronegativo seguido del oxígeno.

Cuando el elemento tenga varios E.O. se indica éste entre paréntesis.

Ejemplos:

CO óxido de carbono (II)

Cu2O óxido de cobre (I)

PbO2 óxido de plomo (IV)

Cl₂O7 óxido de cloro (VII)

Óxido de potasio: K₂ O

Óxido de aluminio: Al₂ O₃

Óxido de azufre (VI): $S_2 O_6 \rightarrow S O_3$

b) PERÓXIDOS.

Son derivados del H_2O_2 (agua oxigenada o peróxido de hidrógeno) por sustitución de los hidrógenos por metales.

El anión O_2 : 2 no puede simplificarse. Se nombra como "peróxido de metal". Ejemplos:

Na₂O₂ peróxido de sodio CaO₂ peróxido de calcio.

c) HIDRUROS

c.1.) HIDRUROS METÁLICOS (M + H).

Nomenclatura Stock.

Sólo se usa con los metales de transición.

Cuando haya ambigüedad se pone el E.O. entre paréntesis.

Los metales del grupo 14 sólo tienen el E.O. = +4 al combinarse con H (o "-4"los no-metales)

Ejemplos:

CoH₂ hidruro de cobalto (II) CuH hidruro de cobre (I)

c.2) HIDRUROS NO METÁLICOS (H + No-Metal de los grupos 13, 14 y 15)

Hay varios de estos compuestos que tienen nombre propio:

H₂O agua

PH₃ fosfina o fosfamina

NH₃ amoniaco

AsH₃ arsina o arsenamina

CH₄ metano

SbH₃ estibina

SiH₄ silano

BH₃ borano

También puede usarse a nomenclatura sistemática: tetrahidruro de silicio, trihidruro de boro...

c.3) HIDRUROS NO METÁLICOS (H + No-Metal de los grupos 16 y 17)

Nomenclatura Única

Se nombran con la sintaxis: "No metal terminado en "uro" de hidrógeno".

Ejemplos:

H₂S Sulfuro de hidrógeno HCl cloruro de hidrógeno

HBr bromuro de hidrógeno

Los hidruros no-metálicos de los grupos 16 y 17 cuando están disueltos en agua tienen características ácidas por lo que se llaman ácido no-metal terminado en "hídrico" Ejemplos:

HCl (ac): ácido clorhídrico H₂S (ac): ácido sulfhídrico

d) SALES BINARIAS (M + No-Metal)

Es la unión de un metal y un no metal. Se nombra el no metal terminando en -uro y a continuación se pone el nombre del metal, poniendo entre paréntesis la valencia del metal en números romanos si tiene más de una

Formular: Símbolo del metal con valencia del no metal y símbolo del no metal con valencia del metal

(En formulación siempre se comienza a escribir por el final del nombre)

Nota: El no-metal actúa siempre con E.O. negativo.

Ejemplos:

Cloruro de magnesio: MgCl₂ Bromuro de hierro (III): Fe Br₃

Sulfuro de calcio: $Ca_2 S_2 \rightarrow se$ simplifica y queda $\rightarrow CaS$

Li₂S sulfuro de litio

FeCl₂ cloruro de hierro (II) Co₂C carburo de cobalto (II) Al₂Se₃ seleniuro de aluminio

e) HIDRÓXIDOS (M + OH) Y CIANUROS (M + CN)

Hidróxidos: Son combinaciones de un metal con grupos OH- (hidroxilo) (M+OH)

Nombre: hidróxido del metal

Formulación: símbolo del metal + grupo OH en paréntesis con la valencia del metal

Cianuros: Son combinaciones de un metal con grupos CN- (cianuro) (M+CN)

Aunque son compuestos ternarios se formulan igual que las sales binarias dado que tanto el

OH-como el CN- son grupos de átomos que permanecen unidos.

Nomenclatura Stock

Ejemplos:

AuOH Hidróxido de oro (I)

HCN Cianuro de hidrógeno

NaOH Hidróxido de sodio

NaCN Cianuro de sodio

Al(OH)3 Hidróxido de aluminio

Fe(CN)2 Cianuro de hierro (II)

Sn(OH)4 Hidróxido de estaño(IV)

Hidróxido de calcio: Ca(OH)2

Hidróxido de estaño (IV): Sn(OH)4

5) ÁCIDOS OXOÁCIDOS (Óxido No Metálico + Agua)

El E.O. del no-metal es el mismo que en el óxido.

Sabiendo la fórmula se puede calcular fácilmente el E.O. del no-metal (o metal de transición) sabiendo que E.O.(H) = +1 y E.O.(O) = -2.

Nomenclatura Tradicional.

Es aceptada por la IUPAC.

Se nombra anteponiendo la palabra "ácido" a los prefijos "hipo", "per" o sin prefijo y los sufijos "oso" o "ico" según el E.O. del no-metal siguiendo la siguiente tabla:

Grupo 14 15 16 17

```
ácido hipo____oso +1 +2 +1
ácido ____oso +2 +3 +4 +3
ácido ____ico +4 +5 +6 +5
ácido per___ico +7
```

Ejemplos de ácidos oxoácidos

H₂CO₃ ácido carbónico

HNO₃ ácido nítrico

H2SO4 ácido sulfúrico

HClO₃ ácido clórico

H2SeO2 ácido hiposelenioso

HBrO ácido hipobromoso

H2SiO2 ácido silicioso

HIO4 ácido periódico

HAsO2 ácido arsenioso

6) OTROS ÁCIDOS OXOÁCIDOS.

a) Ácidos procedentes de metales de transición (E.O. superiores).

Algunos metales de transición tienen varios E.O. y actúan como metales con los inferiores y como no-metales con los superiores.

Procedentes del Cromo (Cr)

(E.O.=+6) H2CrO4: ácido crómico.

Procedentes del Manganeso (Mn)

(E.O.=+6) H₂MnO₄: ácido mangánico (E.O.=+7) HMnO₄: ácido permangánico.

Ácidos polihidratados (óxido no-metálico + n H₂O)

"n" es 3 en no-metales de los grupos 13, 15 y 16; "n" es 2 en no-metales del grupo 14 (Si) y 5 en no-metales del grupo 17 (I).

Se nombran anteponiendo el prefijo "orto"

Eiemplos:

ácido ortotelúrico: TeO3 + 3 H2O; H6TeO6

ácido ortoperyódico: $I_2O_7 + 5 H_2O$; $H_{10}I_2O_{12}$; H_5IO_6

Formulación

Hay "orto" ácidos que son más corrientes que los monohidratados ("meta") y que suelen nombrarse sin especificar el prefijo "orto", tales como el ácido fosfórico (H_3PO_4), el ácido silícico (H_4SiO_4) y el ácido bórico (H_3BO_3)

Sin embargo, se llama al HPO $_3$ ácido metafosforico, al H_2SiO_3 ácido metasilícico y al HBO $_2$ ácido metabórico.

- b) Polihidratados: Se obtienen por adición de más de una molécula de agua sobre el óxido nometálico.
- c) Diácidos: Se obtienen por adición de una molécula de agua sobre dos de óxido no metálico. Se obtienen por adición de una molécula de agua sobre dos de óxido nometálico.

Ejemplos:

 $2 SO_3 + H_2O$; $H_2S_2O_7$ ácido disulfúrico $2 CrO_3 + H_2O$; $H_2Cr_2O_7$ ácido dicrómico

Nomenclatura Sistemática

Válida para oxoácidos normales, polihidratados, diácidos, tioacidos...

Se pueden nombrar de dos formas distintas:

Con ácido prefijo-oxo + prefijo-elemento terminado en "ico" + (E.O.)

Con oxoanión [prefijo-oxo + prefijo-elemento terminado en "ato" + (E.O.)] de hidrógeno.

Ejemplos

Nombrar: H₂SO₄ y H₅IO₆

H2SO4 Tetraoxosulfato (VI) de hidrogeno

Ácido tetraoxosulfúrico (VI)

H₅IO₆ Hexaoxoyodato (VII) de hidrógeno

Ácido hexaoxoyódico (VII)

7) SALES OXOÁCIDAS (TERNARIAS)

Nomenclatura Tradicional.

Es aceptada por la IUPAC.

Se nombra utilizando los prefijos "hipo", "per" o sin prefijo y los sufijos "ito" o "ato" según el E.O. del no-metal seguido del metal + (E.O) (sólo si es necesario), siguiendo la siguiente tabla:

Grupo 14 15 16 17 hipo_____ito +1 +2 +1 _____ito +2 +3 +4 +3 ____ato +4 +5 +6 +5 per___ato +7

Ejemplos:

Na₂SO₄ sulfato de sodio AgNO₃ nitrato de plata Al₂(SO₂)₃ hiposulfito de aluminio KClO₄ perclorato de potasio CaCO₃ carbonato de calcio PbSeO₃ selenito de plomo (II) $Cu(BrO_2)_2$ bromito de cobre (II) $Mg_3(PO_4)_2$ ortofosfato de magnesio

RESUMEN FINAL:

sales en -uro	metal + no metal
Óxidos	elemento + oxígeno
hidróxidos	metal + OH
ácidos oxigenados	Hidrógeno + no metal + oxígeno
ácidos hidrácidos	hidrógeno + no metal
sales oxigenadas(en -ato)	Metal + no metal + oxígeno